lunes, 13 de septiembre de 2010

¿Qué Características ideales debe de tener una computadora para un estudiante de preparatoria?

Velocidad
Actualmente se habla de frecuencias de Gigaherzios (GHz.), o de Megaherzios (MHz.). Lo que supone miles de millones o millones, respectivamente, de ciclos por segundo.

Sin embargo, la capacidad de un procesador no se puede medir solamente en función de su 'frecuencia de reloj', sino que interviene también la cantidad de instrucciones que es capaz de gestionar a la vez ('juego de instrucciones'), y lo que se conoce como 'ancho de bus' (cantidad máxima de información en bruto transmisible) que se mide en bits. Un bit es una pareja del tipo '0/0', '0/1', '1/1' o '1/0' en el código binario: cuantos más bits admita el 'ancho de bus', códigos más largos de ceros y unos se pueden procesar. Esta capacidad viene determinada por el número de transistores, pero también por los sucesivos niveles de memoría que se sitúan cerca de la CPU.

El indicador de la frecuencia de un microprocesador es un buen referente de la velocidad de proceso del mismo, pero no el único. La cantidad de instrucciones necesarias para llevar a cabo una tarea concreta, así como la cantidad de instrucciones ejecutadas por ciclo ICP
Son los otros dos factores que determinan la velocidad de la CPU:
La cantidad de instrucciones necesarias para realizar una tarea depende directamente del juego de instrucciones disponible, mientras que ICP depende de varios factores, como el grado de supersegmentación
La cantidad de unidades de proceso o "pipelines" disponibles, entre otros. La cantidad de instrucciones necesarias para realizar una tarea depende directamente del juego de instrucciones.


Las memorias
En el pasado, los procesadores contaban sólo con la memoria RAM para almacenar la información de las órdenes que se iban pasando sucesivamente al procesador; llegó un momento en que los procesadores eran más potentes que la memoría RAM. Es decir, que ésta les podía pasar de golpe menos información de la que ellos podían gestionar, con lo que el procesador estaba ampliamente desaprovechado
Para solucionar este desfase se diseñaron las 'memorias caché', estableciendo así dos niveles consecutivos de memoria entre la CPU y la memoria RAM.

Junto a la CPU, y en orden creciente de distancia respecto a la misma, se sitúan tres unidades o niveles de memoría. La 'memoria caché de primer nivel' (L1), la 'memoria caché externa' (L2) y la memoria RAM.
La 'caché interna', o de 'primer nivel', es la que determina los datos que el procesador gestionará más inmediatamente, los prioritarios en la cola; su capacidad para almacenar datos es la que define, junto a la 'frecuencia de reloj' y la capacidad de la memoria RAM, la potencia del procesador, puesto que es la que surte el chorro de datos a la CPU.
Hasta hace pocos años su capacidad era de 32 Kilobytes (aproximadamente 8 bits son un byte), pero los actuales procesadores la han aumentado a 64 Kilobytes. Estos son los datos que la caché de primer nivel es capaz de propocionar a la CPU en cada oscilación. Es, por tanto, una memoria corta y de alta capacidad de transmisión.

La 'caché de segundo nivel' tiene una capacidad de gestionar muy superior (entre 256 Kilobyes y 2 Megabytes), pero muy inferior a la memoria RAM, la más alejada, que actualmente se sitúa entre los 500 Megabytes y un Gigabyte. Esta capacidad es tan importante como la fluidez de datos entre las memorias, pues limita la capacidad del usuario, o de los programas que éste ejecutando, de dar muchos datos a la vez al procesador.
Si se está ejecutando un videojuego o un programa con gráficos complejos, se necesitará una memoria RAM de elevada capacidad para almacenar la gran cantidad de instrucciones que conllevan estos programas, e irlas pasando a los sucesivos niveles de memoría para que el procesador las ejecute.

Todos estos componentes (la CPU y las memorias) van ensamblados sobre una matriz plana conocida como 'placa base', que es la encargada de interconectarlos entre sí. La placa base, finalmente, se capsule rodent de un request cofre. El procesador queda así conformado.


Consumo
Procesadores de doble nucleo: Esta nueva tecnología de microprocesadores permite aumentar el rendimiento sin consumir más energía ni generar un exceso de calor.
Al aumentar el calor, disminuye la eficiencia del procesador en general debido al comportamiento de los transistores a diferentes temperaturas.
Con el luge de los portátiles, el problema del espacio y de la generality de calor se ha magnificado.
Los superordenadores actuales son esencialmente series de ordenadores que computan en paralelo.


Bus de datos
Los procesadores funcionan con una anchura de banda bus de 64 bits ( un bit es un dígito binario, una unidad de información que puede ser un 1 o un 0 ) esto significa que puede transmitir simultanenente 64 bits de datos.



Dispositivos de Entrada y Salida.

Los dispositivos de Entrada y Salida permiten la comunicación entre la computadora y el usuario.
En primer termino hablaremos de los dispositivos de entrada, que como su nombre lo indica, sirven para introducir datos (información) a la computadora para su proceso. Los datos se leen de los dispositivos de entrada y se almacenan en la memoria central o interna.
Los dispositivos de entrada convierten la información en señales eléctricas que se almacenan en la memoria central. Los dispositivos de entrada típicos son los teclados, otros son: lápices ópticos, palancas de mando (joystick), CD-ROM, discos compactos (CD), etc. Hoy en día es muy frecuente que el usuario utilice un dispositivo de entrada llamado ratón que mueve un puntero electrónico sobre una pantalla que facilita la interacción usuario-máquina.
En segundo lugar tenemos a los dispositivos de salida, los cuales permiten representar los resultados (salida) del proceso de datos. El dispositivo de salida típico es la pantalla o monitor. Otros dispositivos de salida son: impresoras (imprimen resultados en papel), trazadores gráficos (plotters), bocinas, entre otros y que a continuación se mencionan...
DISPOSITIVOS DE ENTRADA.
TECLADO
Un teclado alfanumérico se utiliza principalmente como un dispositivo para introducir texto. El teclado es un dispositivo eficaz para introducir datos no gráficos como rótulos de imágenes asociados con un despliegue de gráficas. Los teclados también pueden ofrecerse con características que facilitan la entrada de coordenadas de la pantalla, selecciones de menús o funciones de gráficas.
Las teclas de control del cursor y las teclas de funciones son características comunes que se encuentran en teclados de uso general. Las teclas de funciones permiten a los usuarios introducir operaciones de uso común con un solo golpe de la llave y las teclas de control del cursor seleccionan posiciones coordenadas posicionando el cursor de la pantalla en un monitor de video. Además, a menudo se incluye un teclado numérico en el teclado de la computadora para agilizar la entrada de datos numéricos.
Los teclados se pueden clasificar en: 101, 105, Internet, ergonómico.
.
UNIDADES DE DISCO
Los discos duros son dispositivos de almacenamiento secundario con una superficie circular y plana, que se utilizan para registrar información masiva, programas y datos en computadores personales o microcomputadoras.
El disco duro es conocido también como Hard Disk, el disco fijo como Fixed Disk y la unidad de disco duro como Hard Drive.
Estos discos consisten en un soporte rígido sobre el que se deposita una pequeña película de material magnetizable (óxidos o metales), que permite la grabación de los datos por magnetización.
Los avances en las tecnologías de película magnética delgada, permiten que los datos sean grabados en dominios cada vez más pequeños y que estos dispositivos sufran menos daños durante el proceso de lectura-escritura, gracias a que la dureza de sus superficies de grabación es dos veces superior a la de las tradicionales superficies de óxido de hierro. Todas estas mejoras están facilitando disponer de discos con mayores densidades de almacenamiento y con unos tiempos de acceso sensiblemente inferiores.
Los soportes de estos dispositivos giran a gran velocidad, típicamente 3.000 rpm. No obstante, y al contrario de lo que sucede con los disquetes, las cabezas de lectura-escritura no tocan el soporte sino que se desplazan a una distancia del orden de 10-4 mm. de la superficie del disco, gracias al aire que desplaza el disco al girar a gran velocidad, evitando así su desgaste. Para evitar el choque de la cabeza con la superficie del disco en los cortes de alimentación, se dispone de un sistema que separa las cabezas antes de que el disco pierda velocidad.
Los discos duros magnéticos representan el medio de almacenamiento más extendido entre ordenadores personales, estaciones de trabajo, servidores, miniordenadores y grandes ordenadores centrales, debido a sus excelentes características de capacidad, fiabilidad y velocidad de acceso a los datos. En definitiva, los discos duros son el dispositivo de almacenamiento masivo que ofrece la máxima relación capacidad de almacenamiento/coste, con tiempos de acceso muy rápidos.
Junto con las cabezas de lectura-escritura va asociada toda una circuitería electrónica que se encarga de gestionar las tareas de almacenamiento. Esta circuitería es la controladora, cuya función es el proceso del flujo de datos que pasan a través de ella con objeto de darle formato para su transmisión y registro, pero sin alterar su significado.
Entre los principales estándares que definen estos dispositivos de almacenamiento figuran el SCSI (Small Computer Systems Interfase), el ESDI (Enhanced Small Disk Interfase), el IDE (Integrated Drive Electronics) y el EIDE (Enhanced Integrated Drive Electronics).

No hay comentarios:

Publicar un comentario